对比学习(学习笔记)
背景
NLP领域的Bert模型,对于这波图像领域的对比学习热潮,是具有启发和推动作用的。我们知道,Bert预训练模型,通过MLM任务的自监督学习,充分挖掘了模型从海量无标注文本中学习通用知识的能力。而图像领域的预训练,往往是有监督的,就是用ImageNet来进行预训练,但是在下游任务中Fine-tuning的效果,跟Bert在NLP下游任务中带来的性能提升,是没法比的。
因此,对比学习的出现就是要干NLP领域类似Bert预训练的事情,通过自监督学习,不依赖标注数据,要从无标注图像中自己学习知识。图像领域里的自监督可以分为两种类型:生成式自监督学习,判别式自监督学习。对比学习则是典型的判别式自监督学习,相对生成式自监督学习,对比学习的任务难度要低一些。
现有方法基本上可以划分为:基于负例的对比学习方法、基于对比聚类的方法、基于不对称网络结构的方法,以及基于冗余消除损失函数的方法。